齋藤 幸子
  サイトウ サチコ   SAITO Sachiko
   所  属   旭川校
   職  名   教授
言語種別 英語
発行・発表の年月 2021/10
形態種別 学術雑誌
査読 査読あり
標題 Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type
執筆形態 共著第一著者
掲載誌名 Kodai Mathematical Journal
掲載区分国外
出版社・発行元 Tokyo Institute of Technology
巻・号・頁 44(3),pp.457-491
総ページ数 35
担当区分 筆頭著者,責任著者
著者・共著者 Sachiko Saito, Kosei Takashimizu
原著者 Sachiko Saito, Kosei Takashimizu
概要 Let f(z,\bar{z}) be a convenient Newton non-degenerate mixed polynomial with strongly polar non-negative mixed weighted homogeneous face functions. We consider a convenient regular simplicial cone subdivision Σ^∗ which is admissible for f and take the toric modification \hat{π} : X → C^n associated with Σ^∗. We show that the toric modification resolves topologically the singularity of the mixed hypersurface germ defined by f(z,\bar{z}) under the Assumption (*) (Theorem 32). This result is an extension of the first part of Theorem 11 ([4]) by Mutsuo Oka. We also consider some typical examples (§9).

arXiv:2101.09631 [math.AG]
DOI 10.2996/kmj/kmj44304
PermalinkURL https://projecteuclid.org/journals/kodai-mathematical-journal/volume-44/issue-3/Resolutions-of-Newton-non-degenerate-mixed-polynomials-of-strongly-polar/10.2996/kmj/kmj44304.short
researchmap用URL https://projecteuclid.org/journals/kodai-mathematical-journal/volume-44/issue-3/Resolutions-of-Newton-non-degenerate-mixed-polynomials-of-strongly-polar/10.2996/kmj/kmj44304.short