齋藤 幸子
  サイトウ サチコ   SAITO Sachiko
   所  属   旭川校
   職  名   教授
言語種別 英語
発行・発表の年月 2022/03/26
形態種別 その他論文
標題 A note on Newton non-degeneracy of mixed weighted homogeneous polynomials
執筆形態 共著第一著者
掲載区分国外
出版社・発行元 arXiv:2107.08691
総ページ数 11
担当区分 筆頭著者,責任著者
著者・共著者 Sachiko Saito, Kosei Takashimizu
概要 A mixed polynomial f(z, z¯) is called a mixed weighted homogeneous polynomial (Definition 11) if it is both radially and polar weighted homogeneous. Let f be a mixed weighted homogeneous polynomial with respect to a strictly positive radial weight vector P and a polar weight vector Q. Suppose that f is Newton non-degenerate over a compact face ∆(P) and f is polar weighted homogeneous of non-zero polar degree with respect to Q. Then we can show that f : C^∗^n → C has no mixed critical points. Moreover, if we assume that f^{−1}(0) ∩ C^∗^n \neq \emptyset, then we can show that f : C^∗^n → C is surjective. In other words, in this case, Newton non-degeneracy over a compact face ∆(P) implies strong Newton non-degeneracy over ∆(P) (Proposition 18). This is a well-known fact (see [2], Remark 4). The main purpose of this note is to give clear formulations of Newton non-degeneracy and strong Newton non-degeneracy and prove Proposition 18 in detail.
arXiv ID arXiv:2107.08691