|
齋藤 幸子
サイトウ サチコ SAITO Sachiko 所 属 旭川校 職 名 教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2025 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 招待論文 | 招待あり |
| 標題 | Toric resolutions of strongly mixed weighted homogeneous polynomial germs of type J_{10}^- (to appear in) |
| 執筆形態 | 単著 |
| 掲載誌名 | Hokkaido Mathematical Journal |
| 掲載区分 | 国外 |
| 出版社・発行元 | Hokkaido University |
| 総ページ数 | 16 |
| 著者・共著者 | Sachiko Saito |
| 原著者 | Sachiko Saito |
| 概要 | We consider toric resolutions of some strongly mixed weighted homogeneous polynomials of type $J_{10}^-$. We show that the strongly mixed weighted homogeneous polynomial $f := f_{2,2,1,2,1,4}\ (k=3)$ (see §3) has no mixed critical points on $C^*^2$ (Lemma 14), and moreover, show that the strict transform $\tilde V$ of the mixed hypersurface singularity $V := f^{-1}(0)$ via the toric modification $\hat{\pi} : X → C^2$, where we set $f := f_{2,2,1,2,1,4}\ (k=3)$, is not only a real analytic manifold outside of $\hat{\pi}^{-1}(0)$ but also a real analytic manifold as a germ of $\hat{\pi}^{-1}(0)$ (Theorem 16). |